Search results for "Zinc sulfide"

showing 3 items of 3 documents

Photoluminescence Enhancement of CdSe Quantum Dots: A Case of Organogel–Nanoparticle Symbiosis

2012

Highly fluorescent organogels (QD-organogel), prepared by combining a pseudopeptidic macrocycle and different types of CdSe quantum dots (QDs), have been characterized using a battery of optical and microscopic techniques. The results indicate that the presence of the QDs not only does not disrupt the supramolecular organization of the internal fibrillar network of the organogel to a significant extent, but it also decreases the critical concentration of gelator needed to form stable and thermoreversible organogels. Regarding the photophysical properties of the QDs, different trends were observed depending on the presence of a ZnS inorganic shell around the CdSe core. Thus, while the core-s…

PhotoluminescenceSupramolecular chemistryNanoparticleNanotechnologyINGENIERÍAS Y TECNOLOGÍASQUANTUM DOTSBiochemistryFluorescenceCatalysisZinc sulfidechemistry.chemical_compoundColloid and Surface ChemistrySemiconductor quantum dotsORGANOGELNanotecnologíaChemistryCadmium compoundsGeneral ChemistryNano-materialesFluorescenceZinc sulfideChemical engineeringQuantum dotPHOTOLUMINESCENCEHybrid materialsHybrid materialLuminescenceJournal of the American Chemical Society
researchProduct

Investigation of Solid State Diffusion Processes Involved in the Zinc Oxide Sulfidation Reaction

2016

Sulfidation of undoped and aluminum doped zinc oxide materials has been performed by TGA under a H2S atmosphere in order to evaluate the impact of the doping element on sulfidation reaction kinetics and mechanism. The presence of aluminum seems to slow-down the reaction kinetics. This phenomenon might be explained by a modification of the solid state diffusion processes involved in ZnO sulfidation reaction and the related ZnS outward growth, assuming the presence of aluminum atoms inside ZnO and ZnS phases. In order to determine solid state diffusion mechanisms controlling the reaction kinetics, molecular dynamics simulations were performed using a Coulomb-Buckingham potential. Firstly, the…

Atomic diffusionChemical kineticschemistry.chemical_compoundchemistryVacancy defectDiffusionInorganic chemistrySulfidationOxidechemistry.chemical_elementZincZinc sulfideDiffusion Foundations
researchProduct

Splitting of the surface phonon modes in wurtzite nanowires

2013

We analyze the surface optical modes of GaN nanowires (NW) and perform a comparative study with the characteristics expected for other polar NWs. The theoretical analysis of the modes is performed within the context of the effective medium theory that takes into account the dipolar interaction between neighboring NWs (Maxwell-Garnett approximation). It is shown that deviations of the exciting light from the NWs axis, which coincides with the wurtzite c-axis, result in the anticrossing of two distinct surface phonon branches, leading to their splitting in axial and planar components and the appearance of two peaks in the Raman spectra. Additional calculations are performed that determine th…

Materials sciencePhononNanowireGeneral Physics and AstronomyContext (language use)02 engineering and technology01 natural sciencesZinc sulfidesymbols.namesakeCondensed Matter::Materials ScienceOptics0103 physical sciencesDipolar interactionEffective medium theoriesWurtzite nanowiresAluminum nitrideWurtzite crystal structure010302 applied physics[PHYS]Physics [physics]Condensed matter physicsbusiness.industryFilling factorNanowiresGeneral EngineeringMaterial systemsSurface phonon021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMaxwell-GarnettComparative studiesSurfacesDipolesymbolsPhononsWurtzite structure0210 nano-technologybusinessRaman spectroscopySurface phonon mode
researchProduct